Q.P.	Code: 18	ME03	13											R18
Reg	. No:						0-10	2			1	٦		
	SIDDH	IARTI	H INS	TITU	TE O	FEN	GINE	ERI	NG &	TEC	HNO	 LOGY:	: PUTTUR	2
						(AU	TON	OMO	US)			2001.		
	B.	Tech]	III Ye	ar I S	emest	er Su	pplen	nenta	ry Ex	amina	ations	Augus	t-2021	
				DES	SIGN	OF M	IACH	IINE	ELE	MEN	ГS-I			5
Time	3 hours				(1)	lecha	nical	Engin	eerin	g)			Mars M	1 60
N.S.	i o nouro						PAR	Т-А					Max. Ma	arks: 60
				(Ansv	ver all	the C	Juesti	ons 5	$x^{2} =$	10 M	arks)			
1 a	Distin	guish ł	betwee	en britt	tle fra	cture a	and di	ictile	fracti	ire	urks)			214
b	Define	e stress	conce	entrati	on and	l stres	s con	centra	tion t	factor				21VI 2M
c	How i	s a bol	t desig	gnated	?	n tan	lalan		uron i	uetor.				21VI 2M
d	What	are the	main	functi	ons of	the k	nuckl	e ioin	ts?					21VI 2M
e	Under	what c	circum	stance	es flex	ible c	ouplir	igs are	e use	1?				21VI 2M
							PAR'	T-B						2 1 VI
				(Ans	wer al	l Five	Units	s 5 x 1	0 = 4	50 Mai	rks)			
							UNI	T-I			nde to			
2 a	How do	you c	lassify	the m	nachin	e desi	ign? F	Explain	n					5M
b	Explain	the ge	eneral	design	proce	edure	while	desig	ning	a mac	hine e	lement		5M
	R STUURR	s bair			henr	i ditat	OF	{				lement		SIVI
3 A m	shaft, as and an ax	shown kial pul	in Fig lling fo	g. is su orce of	bjecte f 15 kl	ed to a N. Ca	a bend lculate	ling lo e the s	ad of stress	f 3 kN es at A	, pure A and I	torque d B.	of 1000 N-	10M
4 a	What ar	e the fl	-	A B ∢	50 mi ∳	m Dia 250 1 [epeate	nm — UNIT ed stre	`-II ess and	3k	N 15kN 1000 P) N-m	Draw t	he Stress	5M
_	– Time s	sinusoi	dal cu	irves										

b Determine the diameter of a circular rod made of ductile material with a fatigue 5M strength (complete reversal), $\sigma_e=265$ MPa and tensile yield strength of 350 MPa. The member is subjected to a varying axial load from $W_{min} = -300$ KN to $W_{max} = 700$ KN and has a stress concentration factor is 1.8. Use factor of safety as 2.

OR

A machine component is subjected to a flexural stress which fluctuates between + 300 10M MN/m² and - 150 MN/m². Determine the value of minimum ultimate strength according to 1. Gerber relation; 2. Modified Goodman relation; and 3. Soderberg relation. Take yield strength = 0.55 Ultimate strength; Endurance strength = 0.5 Ultimate strength; and actor of safety = 2.

Q.P. Code: 18ME0313

		UNIT-III	
6	De	erive the expression for eccentric load acting parallel to the axis of bolts	10M
		OR	
7	a	Explain briefly the method of riveting?	5M
	b	Show by neat sketches the various ways in which a riveted joint may fail.	5M
		UNIT-IV	
8	a	What are the applications of a cottered joint?	5 M
	b	A knuckle joint is required to withstand a tensile load of 25 kN. Design the joint if	5M
		the permissible stresses are : $\sigma t = 56$ MPa ; $\tau = 40$ MPa and $\sigma c = 70$ MPa.	
		OR	

K18

5M

9 Design a sleeve and cotter joint to resist a tensile load of 60 kN. All parts of the joint 10M are made of the same material with the following allowable stresses: Tensile stress = 60 MPa; shear stress = 70 MPa; and compressive stress = 125 MPa.

UNIT-V

- 10 a What is the effect of keyway cut into the shaft?
 - b A 45 mm diameter shaft is made of steel with yield strength of 400 MPa. A parallel 5M key of size 14 mm wide and 9 mm thick made of steel with yield strength of 340 MPa is to be used. Find the required length of key, if the shaft is loaded to transmit the maximum permissible torque. Use maximum shear stress theory and assume a factor

OR

11 Design a bushed-pin type of flexible coupling to connect a pump shaft to a motor shaft 10M transmitting 32 kW at 960 r.p.m. The overall torque is 20 percent more than mean torque. The material properties are as follows :

(a) The allowable shear and crushing stress for shaft and key material is 40 MPa and 80 MPa respectively.

(b) The allowable shear stress for cast iron is 15 MPa.

(c) The allowable bearing pressure for rubber bush is 0.8 N/mm^2 .

The material of the pin is same as that of shaft and key. Draw neat sketch of the coupling.

END